Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Atlas Generative Models and Geodesic Interpolation (2102.00264v2)

Published 30 Jan 2021 in cs.LG, cs.CV, and math.GT

Abstract: Generative neural networks have a well recognized ability to estimate underlying manifold structure of high dimensional data. However, if a single latent space is used, it is not possible to faithfully represent a manifold with topology different from Euclidean space. In this work we define the general class of Atlas Generative Models (AGMs), models with hybrid discrete-continuous latent space that estimate an atlas on the underlying data manifold together with a partition of unity on the data space. We identify existing examples of models from various popular generative paradigms that fit into this class. Due to the atlas interpretation, ideas from non-linear latent space analysis and statistics, e.g. geodesic interpolation, which has previously only been investigated for models with simply connected latent spaces, may be extended to the entire class of AGMs in a natural way. We exemplify this by generalizing an algorithm for graph based geodesic interpolation to the setting of AGMs, and verify its performance experimentally.

Citations (5)

Summary

We haven't generated a summary for this paper yet.