Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VTAE: Variational Transformer Autoencoder with Manifolds Learning (2304.00948v1)

Published 3 Apr 2023 in cs.CV

Abstract: Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables and these models use a nonlinear function (generator) to map latent samples into the data space. On the other hand, the nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning. This weak projection, however, can be addressed by a Riemannian metric, and we show that geodesics computation and accurate interpolations between data samples on the Riemannian manifold can substantially improve the performance of deep generative models. In this paper, a Variational spatial-Transformer AutoEncoder (VTAE) is proposed to minimize geodesics on a Riemannian manifold and improve representation learning. In particular, we carefully design the variational autoencoder with an encoded spatial-Transformer to explicitly expand the latent variable model to data on a Riemannian manifold, and obtain global context modelling. Moreover, to have smooth and plausible interpolations while traversing between two different objects' latent representations, we propose a geodesic interpolation network different from the existing models that use linear interpolation with inferior performance. Experiments on benchmarks show that our proposed model can improve predictive accuracy and versatility over a range of computer vision tasks, including image interpolations, and reconstructions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Pourya Shamsolmoali (27 papers)
  2. Masoumeh Zareapoor (19 papers)
  3. Huiyu Zhou (109 papers)
  4. Dacheng Tao (829 papers)
  5. Xuelong Li (268 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.