Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining and Consistency (2101.12727v3)

Published 29 Jan 2021 in cs.CV and cs.LG

Abstract: Most modern unsupervised domain adaptation (UDA) approaches are rooted in domain alignment, i.e., learning to align source and target features to learn a target domain classifier using source labels. In semi-supervised domain adaptation (SSDA), when the learner can access few target domain labels, prior approaches have followed UDA theory to use domain alignment for learning. We show that the case of SSDA is different and a good target classifier can be learned without needing alignment. We use self-supervised pretraining (via rotation prediction) and consistency regularization to achieve well separated target clusters, aiding in learning a low error target classifier. With our Pretraining and Consistency (PAC) approach, we achieve state of the art target accuracy on this semi-supervised domain adaptation task, surpassing multiple adversarial domain alignment methods, across multiple datasets. PAC, while using simple techniques, performs remarkably well on large and challenging SSDA benchmarks like DomainNet and Visda-17, often outperforming recent state of the art by sizeable margins. Code for our experiments can be found at https://github.com/venkatesh-saligrama/PAC

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Samarth Mishra (13 papers)
  2. Kate Saenko (178 papers)
  3. Venkatesh Saligrama (110 papers)
Citations (25)