Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Split-Douglas-Rachford algorithm for composite monotone inclusions and Split-ADMM (2101.11683v3)

Published 27 Jan 2021 in math.OC

Abstract: In this paper we provide a generalization of the Douglas-Rachford splitting (DRS) and the primal-dual algorithm (Vu 2013, Condat 2013) for solving monotone inclusions in a real Hilbert space involving a general linear operator. The proposed method allows for primal and dual non-standard metrics and activates the linear operator separately from the monotone operators appearing in the inclusion. In the simplest case when the linear operator has full range, it reduces to classical DRS. Moreover, the weak convergence of primal-dual sequences to a Kuhn-Tucker point is guaranteed, generalizing the main result in Svaiter (2011). Inspired by Gabay (1983), we also derive a new Split-ADMM (SADMM) by applying our method to the dual of a convex optimization problem involving a linear operator which can be expressed as the composition of two linear operators. The proposed SADMM activates one linear operator implicitly and the other one explicitly, and we recover ADMM when the latter is set as the identity. Connections and comparisons of our theoretical results with respect to the literature are provided for the main algorithm and SADMM. The flexibility and efficiency of both methods is illustrated via a numerical simulations in total variation image restoration and a sparse minimization problem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.