Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

A uniform quantitative Manin-Mumford theorem for curves over function fields (2101.11593v2)

Published 27 Jan 2021 in math.NT and math.AG

Abstract: We prove that any smooth projective geometrically connected non-isotrivial curve of genus $g\ge 2$ over a one-dimensional function field of any characteristic has at most $16g2+32g+124$ torsion points for any Abel--Jacobi embedding of the curve into its Jacobian. The proof uses Zhang's admissible pairing on curves, the arithmetic Hodge index theorem over function fields, and the metrized graph analogue of Elkies' lower bound for the Green function. More generally, we prove an explicit Bogomolov-type result bounding the number of geometric points of small N\'eron-Tate height on the curve embedded into its Jacobian.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.