Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Null controllability of the parabolic spherical Grushin equation (2101.11447v3)

Published 27 Jan 2021 in math.OC and math.AP

Abstract: We investigate the null controllability property of the parabolic equation associated with the Grushin operator defined by the canonical almost-Riemannian structure on the 2-dimensional sphere $\mathbb S2$. This is the natural generalization of the Grushin operator $\mathcal G = \partial_x2 + x2\partial_y2$ on $\mathbb R2$ to this curved setting, and presents a degeneracy at the equator of $\mathbb S2$. We prove that the null controllability is verified in large time when the control acts as a source term distributed on a subset $\bar{\omega} = { (x_1,x_2,x_3)\in \mathbb S2\mid \alpha<|x_3|<\beta }$ for some $0\le\alpha<\beta\le 1$. More precisely, we show the existence of a positive time $T{*}>0$ such that the system is null controllable from $\bar{\omega}$ in any time $T\ge T{*}$, and that the minimal time of control from $\bar{\omega}$ satisfies $T_{min}\ge\log(1/\sqrt{1-\alpha2})$. Here, the lower bound corresponds to the Agmon distance of $\bar{\omega}$ from the equator. These results are obtained by proving a suitable Carleman estimate by using unitary transformations and Hardy-Poincar\'e type inequalities to show the positive null-controllability result. The negative statement is proved by exploiting an appropriate family of spherical harmonics, which concentrates at the equator, to falsify the uniform observability inequality.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)