Global rigidity for ultra-differentiable quasiperiodic cocycles and its spectral applications (2101.11150v1)
Abstract: For quasiperiodic Schr\"odinger operators with one-frequency analytic potentials, from dynamical systems side, it has been proved that the corresponding quasiperiodic Schr\"odinger cocycle is either rotations reducible or has positive Lyapunov exponent for all irrational frequency and almost every energy. From spectral theory side, the "Schr\"odinger conjecture" and the "Last's intersection spectrum conjecture" have been verified. The proofs of above results crucially depend on the analyticity of the potentials. People are curious about if the analyticity is essential for those problems, see open problems by Fayad-Krikorian and Jitomirskaya-Mar. In this paper, we prove the above mentioned results for ultra-differentiable potentials.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.