Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Linformer with a modified self-attention with linear complexity (2101.10277v1)

Published 16 Dec 2020 in cs.LG

Abstract: Although Transformer models such as Google's BERT and OpenAI's GPT-3 are successful in many natural language processing tasks, training and deploying these models are costly and inefficient.Even if pre-trained models are used, deploying these models still remained a challenge due to their large size. Apart from deployment, these models take higher time during inference restricting user-friendliness. The main bottleneck is self-attention which uses quadratic time and space with respect to the sequence length. In order to reduce the quadratic time complexity of the self-attention mechanism, Linformer by Facebook's AI research team was introduced where they showed that the self-attention mechanism can be approximated by a low-rank matrix and exploiting this finding, a new method for self-attention with linear time and space complexity was proposed by them. In the Linformer, the time complexity depends on the projection mapping dimension which acts as a hyperparameter and affects the performance of the model, tuning this hyperparameter can be time-consuming. In this paper, I proposed an alternative method for self-attention with linear complexity in time and space and is independent of the projection mapping dimension. Since this method works for long sequences this can be used for images as well as audios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Madhusudan Verma (3 papers)
Citations (8)