Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling (2003.10162v2)

Published 23 Mar 2020 in math.OC, cs.GT, and cs.LG

Abstract: Owing to their stability and convergence speed, extragradient methods have become a staple for solving large-scale saddle-point problems in machine learning. The basic premise of these algorithms is the use of an extrapolation step before performing an update; thanks to this exploration step, extra-gradient methods overcome many of the non-convergence issues that plague gradient descent/ascent schemes. On the other hand, as we show in this paper, running vanilla extragradient with stochastic gradients may jeopardize its convergence, even in simple bilinear models. To overcome this failure, we investigate a double stepsize extragradient algorithm where the exploration step evolves at a more aggressive time-scale compared to the update step. We show that this modification allows the method to converge even with stochastic gradients, and we derive sharp convergence rates under an error bound condition.

Citations (65)

Summary

We haven't generated a summary for this paper yet.