Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Contact problems with friction for hemitropic solids: boundary variational inequality approach (2101.09051v1)

Published 22 Jan 2021 in math.AP

Abstract: We study the interior and exterior contact problems for hemitropic elastic solids. We treat the cases when the friction effects, described by Tresca friction (given friction model), are taken into consideration either on some part of the boundary of the body or on the whole boundary. We equivalently reduce these problems to a boundary variational inequality with the help of the Steklov-Poincar'e type operator. Based on our boundary variational inequality approach we prove existence and uniqueness theorems for weak solutions. We prove that the solutions continuously depend on the data of the original problem and on the friction coefficient. For the interior problem necessary and sufficient conditions of solvability are established when friction is taken into consideration on the whole boundary.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.