Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing and Measuring the Similarity of Neural Networks with Persistent Homology (2101.07752v3)

Published 19 Jan 2021 in cs.LG and math.AT

Abstract: Characterizing the structural properties of neural networks is crucial yet poorly understood, and there are no well-established similarity measures between networks. In this work, we observe that neural networks can be represented as abstract simplicial complex and analyzed using their topological 'fingerprints' via Persistent Homology (PH). We then describe a PH-based representation proposed for characterizing and measuring similarity of neural networks. We empirically show the effectiveness of this representation as a descriptor of different architectures in several datasets. This approach based on Topological Data Analysis is a step towards better understanding neural networks and serves as a useful similarity measure.

Citations (6)

Summary

We haven't generated a summary for this paper yet.