Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistence Homology of Networks: Methods and Applications (1907.08708v1)

Published 19 Jul 2019 in math.AT and cs.SI

Abstract: Information networks are becoming increasingly popular to capture complex relationships across various disciplines, such as social networks, citation networks, and biological networks. The primary challenge in this domain is measuring similarity or distance between networks based on topology. However, classical graph-theoretic measures are usually local and mainly based on differences between either node or edge measurements or correlations without considering the topology of networks such as the connected components or holes. In recent years, mathematical tools and deep learning based methods have become popular to extract the topological features of networks. Persistent homology (PH) is a mathematical tool in computational topology that measures the topological features of data that persist across multiple scales with applications ranging from biological networks to social networks. In this paper, we provide a conceptual review of key advancements in this area of using PH on complex network science. We give a brief mathematical background on PH, review different methods (i.e. filtrations) to define PH on networks and highlight different algorithms and applications where PH is used in solving network mining problems. In doing so, we develop a unified framework to describe these recent approaches and emphasize major conceptual distinctions. We conclude with directions for future work. We focus our review on recent approaches that get significant attention in the mathematics and data mining communities working on network data. We believe our summary of the analysis of PH on networks will provide important insights to researchers in applied network science.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mehmet Emin Aktas (10 papers)
  2. Esra Akbas (23 papers)
  3. Ahmed El Fatmaoui (1 paper)
Citations (121)

Summary

We haven't generated a summary for this paper yet.