Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rigorous Bounds on the Heating Rate in Thue-Morse Quasiperiodically and Randomly Driven Quantum Many-Body Systems (2101.07065v1)

Published 18 Jan 2021 in cond-mat.stat-mech and quant-ph

Abstract: The nonequilibrium quantum dynamics of closed many-body systems is a rich yet challenging field. While recent progress for periodically driven (Floquet) systems has yielded a number of rigorous results, our understanding on quantum many-body systems driven by rapidly varying but a- and quasi-periodic driving is still limited. Here, we derive rigorous, non-perturbative, bounds on the heating rate in quantum many-body systems under Thue-Morse quasi-periodic driving and under random multipolar driving, the latter being a tunably randomized variant of the former. In the process, we derive a static effective Hamiltonian that describes the transient prethermal state, including the dynamics of local observables. Our bound for Thue-Morse quasi-periodic driving suggests that the heating time scales like $(\omega/g){-C\ln(\omega/g)}$ with a positive constant $C$ and a typical energy scale $g$ of the Hamiltonian, in agreement with our numerical simulations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.