Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Match-Ignition: Plugging PageRank into Transformer for Long-form Text Matching (2101.06423v2)

Published 16 Jan 2021 in cs.CL and cs.IR

Abstract: Neural text matching models have been widely used in community question answering, information retrieval, and dialogue. However, these models designed for short texts cannot well address the long-form text matching problem, because there are many contexts in long-form texts can not be directly aligned with each other, and it is difficult for existing models to capture the key matching signals from such noisy data. Besides, these models are computationally expensive for simply use all textual data indiscriminately. To tackle the effectiveness and efficiency problem, we propose a novel hierarchical noise filtering model, namely Match-Ignition. The main idea is to plug the well-known PageRank algorithm into the Transformer, to identify and filter both sentence and word level noisy information in the matching process. Noisy sentences are usually easy to detect because previous work has shown that their similarity can be explicitly evaluated by the word overlapping, so we directly use PageRank to filter such information based on a sentence similarity graph. Unlike sentences, words rely on their contexts to express concrete meanings, so we propose to jointly learn the filtering and matching process, to well capture the critical word-level matching signals. Specifically, a word graph is first built based on the attention scores in each self-attention block of Transformer, and key words are then selected by applying PageRank on this graph. In this way, noisy words will be filtered out layer by layer in the matching process. Experimental results show that Match-Ignition outperforms both SOTA short text matching models and recent long-form text matching models. We also conduct detailed analysis to show that Match-Ignition efficiently captures important sentences and words, to facilitate the long-form text matching process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Liang Pang (94 papers)
  2. Yanyan Lan (87 papers)
  3. Xueqi Cheng (274 papers)
Citations (18)