Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Enhancement using Fuzzy Intensity Measure and Adaptive Clipping Histogram Equalization (2101.05922v1)

Published 15 Jan 2021 in cs.CV

Abstract: Image enhancement aims at processing an input image so that the visual content of the output image is more pleasing or more useful for certain applications. Although histogram equalization is widely used in image enhancement due to its simplicity and effectiveness, it changes the mean brightness of the enhanced image and introduces a high level of noise and distortion. To address these problems, this paper proposes image enhancement using fuzzy intensity measure and adaptive clipping histogram equalization (FIMHE). FIMHE uses fuzzy intensity measure to first segment the histogram of the original image, and then clip the histogram adaptively in order to prevent excessive image enhancement. Experiments on the Berkeley database and CVF-UGR-Image database show that FIMHE outperforms state-of-the-art histogram equalization based methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.