Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Study of Histogram Equalization Based Image Enhancement Techniques for Brightness Preservation and Contrast Enhancement (1311.4033v1)

Published 16 Nov 2013 in cs.CV

Abstract: Histogram Equalization is a contrast enhancement technique in the image processing which uses the histogram of image. However histogram equalization is not the best method for contrast enhancement because the mean brightness of the output image is significantly different from the input image. There are several extensions of histogram equalization has been proposed to overcome the brightness preservation challenge. Contrast enhancement using brightness preserving bi-histogram equalization (BBHE) and Dualistic sub image histogram equalization (DSIHE) which divides the image histogram into two parts based on the input mean and median respectively then equalizes each sub histogram independently. This paper provides review of different popular histogram equalization techniques and experimental study based on the absolute mean brightness error (AMBE), peak signal to noise ratio (PSNR), Structure similarity index (SSI) and Entropy.

Citations (130)

Summary

We haven't generated a summary for this paper yet.