Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Smoothed Autoencoder-Optimal Transport model (2101.05679v1)

Published 14 Jan 2021 in stat.ML and cs.LG

Abstract: Generative modelling is a key tool in unsupervised machine learning which has achieved stellar success in recent years. Despite this huge success, even the best generative models such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) come with their own shortcomings, mode collapse and mode mixture being the two most prominent problems. In this paper we develop a new generative model capable of generating samples which resemble the observed data, and is free from mode collapse and mode mixture. Our model is inspired by the recently proposed Autoencoder-Optimal Transport (AE-OT) model and tries to improve on it by addressing the problems faced by the AE-OT model itself, specifically with respect to the sample generation algorithm. Theoretical results concerning the bound on the error in approximating the non-smooth Brenier potential by its smoothed estimate, and approximating the discontinuous optimal transport map by a smoothed optimal transport map estimate have also been established in this paper.

Citations (1)

Summary

We haven't generated a summary for this paper yet.