Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

"Best-of-Many-Samples" Distribution Matching (1909.12598v1)

Published 27 Sep 2019 in cs.LG and stat.ML

Abstract: Generative Adversarial Networks (GANs) can achieve state-of-the-art sample quality in generative modelling tasks but suffer from the mode collapse problem. Variational Autoencoders (VAE) on the other hand explicitly maximize a reconstruction-based data log-likelihood forcing it to cover all modes, but suffer from poorer sample quality. Recent works have proposed hybrid VAE-GAN frameworks which integrate a GAN-based synthetic likelihood to the VAE objective to address both the mode collapse and sample quality issues, with limited success. This is because the VAE objective forces a trade-off between the data log-likelihood and divergence to the latent prior. The synthetic likelihood ratio term also shows instability during training. We propose a novel objective with a "Best-of-Many-Samples" reconstruction cost and a stable direct estimate of the synthetic likelihood. This enables our hybrid VAE-GAN framework to achieve high data log-likelihood and low divergence to the latent prior at the same time and shows significant improvement over both hybrid VAE-GANS and plain GANs in mode coverage and quality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Apratim Bhattacharyya (22 papers)
  2. Mario Fritz (160 papers)
  3. Bernt Schiele (210 papers)
Citations (4)