Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp pointwise-in-time error estimate of L1 scheme for nonlinear subdiffusion equations (2101.04554v1)

Published 12 Jan 2021 in math.NA and cs.NA

Abstract: An essential feature of the subdiffusion equations with the $\alpha$-order time fractional derivative is the weak singularity at the initial time. The weak regularity of the solution is usually characterized by a regularity parameter $\sigma\in (0,1)\cup(1,2)$. Under this general regularity assumption, we here obtain the pointwise-in-time error estimate of the widely used L1 scheme for nonlinear subdiffusion equations. To the end, we present a refined discrete fractional-type Gr\"onwall inequality and a rigorous analysis for the truncation errors. Numerical experiments are provided to demonstrate the effectiveness of our theoretical analysis.

Citations (10)

Summary

We haven't generated a summary for this paper yet.