Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Analysis of Backward Subdiffusion Problems (2007.16134v1)

Published 31 Jul 2020 in math.NA and cs.NA

Abstract: The aim of this paper is to develop and analyze numerical schemes for approximately solving the backward problem of subdiffusion equation involving a fractional derivative in time with order $\alpha\in(0,1)$. After using quasi-boundary value method to regularize the "mildly" ill-posed problem, we propose a fully discrete scheme by applying finite element method (FEM) in space and convolution quadrature (CQ) in time. We provide a thorough error analysis of the resulting discrete system in both cases of smooth and nonsmooth data. The analysis relies heavily on smoothing properties of (discrete) solution operators, and nonstandard error estimate for the direct problem in terms of problem data regularity. The theoretical results are useful to balance discretization parameters, regularization parameter and noise level. Numerical examples are presented to illustrate the theoretical results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.