Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed-Integer Approaches to Constrained Optimum Communication Spanning Tree Problem (2101.03872v1)

Published 11 Jan 2021 in math.OC, cs.DM, and math.CO

Abstract: Several novel mixed-integer linear and bilinear formulations are proposed for the optimum communication spanning tree problem. They implement the distance-based approach: graph distances are directly modeled by continuous, integral, or binary variables, and interconnection between distance variables is established using the recursive BeLLMan-type conditions or using matrix equations from algebraic graph theory. These non-linear relations are used either directly giving rise to the bilinear formulations, or, through the big-M reformulation, resulting in the linear programs. A branch-and-bound framework of Gurobi 9.0 optimization software is employed to compare performance of the novel formulations on the example of an optimum requirement spanning tree problem with additional vertex degree constraints. Several real-world requirements matrices from transportation industry are used to generate a number of examples of different size, and computational experiments show the superiority of the two novel linear distance-based formulations over the the traditional multicommodity flow model.

Summary

We haven't generated a summary for this paper yet.