Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower bound for the cost of connecting tree with given vertex degree sequence (1808.06199v2)

Published 19 Aug 2018 in math.CO and cs.DM

Abstract: The optimal connecting network problem generalizes many models of structure optimization known from the literature, including communication and transport network topology design, graph cut and graph clustering, structure identification from data, etc. For the case of connecting trees with the given sequence of vertex degrees, the cost of the optimal tree is shown to be bounded from below by the solution of a semidefinite optimization program with bilinear matrix constraints, which is reduced to the solution of a series of convex programs with linear matrix inequality constraints. The proposed lower bound estimate is used to construct several heuristic algorithms and to evaluate their quality on a variety of generated and real-life data sets. Keywords: Optimal communication network, generalized Wiener index, origin-destination matrix, semidefinite programming, quadratic matrix inequality.

Citations (2)

Summary

We haven't generated a summary for this paper yet.