Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bilinear Optimal Control of an Advection-reaction-diffusion System (2101.02629v1)

Published 7 Jan 2021 in math.OC

Abstract: We consider the bilinear optimal control of an advection-reaction-diffusion system, where the control arises as the velocity field in the advection term. Such a problem is generally challenging from both theoretical analysis and algorithmic design perspectives mainly because the state variable depends nonlinearly on the control variable and an additional divergence-free constraint on the control is coupled together with the state equation. Mathematically, the proof of the existence of optimal solutions is delicate, and up to now, only some results are known for a few special cases where additional restrictions are imposed on the space dimension and the regularity of the control. We prove the existence of optimal controls and derive the first-order optimality conditions in general settings without any extra assumption. Computationally, the well-known conjugate gradient (CG) method can be applied conceptually. However, due to the additional divergence-free constraint on the control variable and the nonlinear relation between the state and control variables, it is challenging to compute the gradient and the optimal stepsize at each CG iteration, and thus nontrivial to implement the CG method. To address these issues, we advocate a fast inner preconditioned CG method to ensure the divergence-free constraint and an efficient inexactness strategy to determine an appropriate stepsize. An easily implementable nested CG method is thus proposed for solving such a complicated problem. For the numerical discretization, we combine finite difference methods for the time discretization and finite element methods for the space discretization. Efficiency of the proposed nested CG method is promisingly validated by the results of some preliminary numerical experiments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.