Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention-based multi-task learning for speech-enhancement and speaker-identification in multi-speaker dialogue scenario (2101.02550v2)

Published 7 Jan 2021 in eess.AS and cs.SD

Abstract: Multi-task learning (MTL) and attention mechanism have been proven to effectively extract robust acoustic features for various speech-related tasks in noisy environments. In this study, we propose an attention-based MTL (ATM) approach that integrates MTL and the attention-weighting mechanism to simultaneously realize a multi-model learning structure that performs speech enhancement (SE) and speaker identification (SI). The proposed ATM system consists of three parts: SE, SI, and attention-Net (AttNet). The SE part is composed of a long-short-term memory (LSTM) model, and a deep neural network (DNN) model is used to develop the SI and AttNet parts. The overall ATM system first extracts the representative features and then enhances the speech signals in LSTM-SE and specifies speaker identity in DNN-SI. The AttNet computes weights based on DNN-SI to prepare better representative features for LSTM-SE. We tested the proposed ATM system on Taiwan Mandarin hearing in noise test sentences. The evaluation results confirmed that the proposed system can effectively enhance speech quality and intelligibility of a given noisy input. Moreover, the accuracy of the SI can also be notably improved by using the proposed ATM system.

Citations (3)

Summary

We haven't generated a summary for this paper yet.