Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributionally robust second-order stochastic dominance constrained optimization with Wasserstein ball

Published 4 Jan 2021 in math.OC | (2101.00838v2)

Abstract: We consider a distributionally robust second-order stochastic dominance constrained optimization problem. We require the dominance constraints hold with respect to all probability distributions in a Wasserstein ball centered at the empirical distribution. We adopt the sample approximation approach to develop a linear programming formulation that provides a lower bound. We propose a novel split-and-dual decomposition framework which provides an upper bound. We establish quantitative convergency for both lower and upper approximations given some constraint qualification conditions. To efficiently solve the non-convex upper bound problem, we use a sequential convex approximation algorithm. Numerical evidences on a portfolio selection problem valid the convergency and effectiveness of the proposed two approximation methods.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.