Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications (2012.14698v4)

Published 29 Dec 2020 in math.OC

Abstract: We consider a general conic mixed-binary set where each homogeneous conic constraint $j$ involves an affine function of independent continuous variables and an epigraph variable associated with a nonnegative function, $f_j$, of common binary variables. Sets of this form naturally arise as substructures in a number of applications including mean-risk optimization, chance-constrained problems, portfolio optimization, lot-sizing and scheduling, fractional programming, variants of the best subset selection problem, a class of sparse semidefinite programs, and distributionally robust chance-constrained programs. We give a convex hull description of this set that relies on simultaneous characterization of the epigraphs of $f_j$'s, which is easy to do when all functions $f_j$'s are submodular. Our result unifies and generalizes an existing result in two important directions. First, it considers \emph{multiple general convex cone} constraints instead of a single second-order cone type constraint. Second, it takes \emph{arbitrary nonnegative functions} instead of a specific submodular function obtained from the square root of an affine function. We close by demonstrating the applicability of our results in the context of a number of problem classes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.