Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Dominant Classes in Universal Adversarial Perturbations (2012.14352v2)

Published 28 Dec 2020 in cs.LG

Abstract: The reasons why Deep Neural Networks are susceptible to being fooled by adversarial examples remains an open discussion. Indeed, many different strategies can be employed to efficiently generate adversarial attacks, some of them relying on different theoretical justifications. Among these strategies, universal (input-agnostic) perturbations are of particular interest, due to their capability to fool a network independently of the input in which the perturbation is applied. In this work, we investigate an intriguing phenomenon of universal perturbations, which has been reported previously in the literature, yet without a proven justification: universal perturbations change the predicted classes for most inputs into one particular (dominant) class, even if this behavior is not specified during the creation of the perturbation. In order to justify the cause of this phenomenon, we propose a number of hypotheses and experimentally test them using a speech command classification problem in the audio domain as a testbed. Our analyses reveal interesting properties of universal perturbations, suggest new methods to generate such attacks and provide an explanation of dominant classes, under both a geometric and a data-feature perspective.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jon Vadillo (7 papers)
  2. Roberto Santana (32 papers)
  3. Jose A. Lozano (31 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.