Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal adversarial examples in speech command classification (1911.10182v4)

Published 22 Nov 2019 in cs.LG, eess.AS, and stat.ML

Abstract: Adversarial examples are inputs intentionally perturbed with the aim of forcing a machine learning model to produce a wrong prediction, while the changes are not easily detectable by a human. Although this topic has been intensively studied in the image domain, classification tasks in the audio domain have received less attention. In this paper we address the existence of universal perturbations for speech command classification. We provide evidence that universal attacks can be generated for speech command classification tasks, which are able to generalize across different models to a significant extent. Additionally, a novel analytical framework is proposed for the evaluation of universal perturbations under different levels of universality, demonstrating that the feasibility of generating effective perturbations decreases as the universality level increases. Finally, we propose a more detailed and rigorous framework to measure the amount of distortion introduced by the perturbations, demonstrating that the methods employed by convention are not realistic in audio-based problems.

Citations (28)

Summary

We haven't generated a summary for this paper yet.