Papers
Topics
Authors
Recent
2000 character limit reached

An overview on deep learning-based approximation methods for partial differential equations

Published 22 Dec 2020 in math.NA, cs.LG, and cs.NA | (2012.12348v3)

Abstract: It is one of the most challenging problems in applied mathematics to approximatively solve high-dimensional partial differential equations (PDEs). Recently, several deep learning-based approximation algorithms for attacking this problem have been proposed and tested numerically on a number of examples of high-dimensional PDEs. This has given rise to a lively field of research in which deep learning-based methods and related Monte Carlo methods are applied to the approximation of high-dimensional PDEs. In this article we offer an introduction to this field of research by revisiting selected mathematical results related to deep learning approximation methods for PDEs and reviewing the main ideas of their proofs. We also provide a short overview of the recent literature in this area of research.

Citations (133)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.