Papers
Topics
Authors
Recent
2000 character limit reached

Globally-convergent Iteratively Reweighted Least Squares for Robust Regression Problems

Published 25 Jun 2020 in cs.LG, math.OC, stat.ME, and stat.ML | (2006.14211v1)

Abstract: We provide the first global model recovery results for the IRLS (iteratively reweighted least squares) heuristic for robust regression problems. IRLS is known to offer excellent performance, despite bad initializations and data corruption, for several parameter estimation problems. Existing analyses of IRLS frequently require careful initialization, thus offering only local convergence guarantees. We remedy this by proposing augmentations to the basic IRLS routine that not only offer guaranteed global recovery, but in practice also outperform state-of-the-art algorithms for robust regression. Our routines are more immune to hyperparameter misspecification in basic regression tasks, as well as applied tasks such as linear-armed bandit problems. Our theoretical analyses rely on a novel extension of the notions of strong convexity and smoothness to weighted strong convexity and smoothness, and establishing that sub-Gaussian designs offer bounded weighted condition numbers. These notions may be useful in analyzing other algorithms as well.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.