Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the identification of piecewise constant coefficients in optical diffusion tomography by level set (2012.11980v1)

Published 22 Dec 2020 in math.NA and cs.NA

Abstract: In this paper, we propose a level set regularization approach combined with a split strategy for the simultaneous identification of piecewise constant diffusion and absorption coefficients from a finite set of optical tomography data (Neumann-to-Dirichlet data). This problem is a high nonlinear inverse problem combining together the exponential and mildly ill-posedness of diffusion and absorption coefficients, respectively. We prove that the parameter-to-measurement map satisfies sufficient conditions (continuity in the $L1$ topology) to guarantee regularization properties of the proposed level set approach. On the other hand, numerical tests considering different configurations bring new ideas on how to propose a convergent split strategy for the simultaneous identification of the coefficients. The behavior and performance of the proposed numerical strategy is illustrated with some numerical examples.

Citations (8)

Summary

We haven't generated a summary for this paper yet.