Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a level-set method for ill-posed problems with piecewise non-constant coefficients (1207.2572v2)

Published 11 Jul 2012 in math.NA, math.AP, and math.FA

Abstract: We investigate a level-set type method for solving ill-posed problems, with the assumption that the solutions are piecewise, but not necessarily constant functions with unknown level sets and unknown level values. In order to get stable approximate solutions of the inverse problem we propose a Tikhonov-type regularization approach coupled with a level set framework. We prove the existence of generalized minimizers for the Tikhonov functional. Moreover, we prove convergence and stability of the regularized solutions with respect to the noise level, characterizing the level-set approach as a regularization method for inverse problems. We also show the applicability of the proposed level set method in some interesting inverse problems arising in elliptic PDE models. Keywords: Level Set Methods, Regularization, Ill-Posed Problems, Piecewise Non-Constant Coefficients

Summary

We haven't generated a summary for this paper yet.