Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Classification of classical twists of the standard Lie bialgebra structure on a loop algebra (2012.05679v1)

Published 10 Dec 2020 in math.QA and math.AG

Abstract: The standard Lie bialgebra structure on an affine Kac-Moody algebra induces a Lie bialgebra structure on the underlying loop algebra and its parabolic subalgebras. In this paper we classify all classical twists of the induced Lie bialgebra structures in terms of Belavin-Drinfeld quadruples up to a natural notion of equivalence. To obtain this classification we first show that the induced bialgebra structures are defined by certain solutions of the classical Yang-Baxter equation (CYBE) with two parameters. Then, using the algebro-geometric theory of CYBE, based on torsion free coherent sheaves, we reduce the problem to the well-known classification of trigonometric solutions given by Belavin and Drinfeld. The classification of twists in the case of parabolic subalgebras allows us to answer recently posed open questions regarding the so-called quasi-trigonometric solutions of CYBE.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.