Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

An Enhanced MeanSum Method For Generating Hotel Multi-Review Summarizations (2012.03656v2)

Published 7 Dec 2020 in cs.CL and cs.AI

Abstract: Multi-document summaritazion is the process of taking multiple texts as input and producing a short summary text based on the content of input texts. Up until recently, multi-document summarizers are mostly supervised extractive. However, supervised methods require datasets of large, paired document-summary examples which are rare and expensive to produce. In 2018, an unsupervised multi-document abstractive summarization method(Meansum) was proposed by Chu and Liu, and demonstrated competitive performances comparing to extractive methods. Despite good evaluation results on automatic metrics, Meansum has multiple limitations, notably the inability of dealing with multiple aspects. The aim of this work was to use Multi-Aspect Masker(MAM) as content selector to address the issue with multi-aspect. Moreover, we propose a regularizer to control the length of the generated summaries. Through a series of experiments on the hotel dataset from Trip Advisor, we validate our assumption and show that our improved model achieves higher ROUGE, Sentiment Accuracy than the original Meansum method and also beats/ comprarable/close to the supervised baseline.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.