Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

A new generalization of the Genocchi numbers and its consequence on the Bernoulli polynomials (2012.01969v1)

Published 3 Dec 2020 in math.NT

Abstract: This paper presents a new generalization of the Genocchi numbers and the Genocchi theorem. As consequences, we obtain some important families of integer-valued polynomials those are closely related to the Bernoulli polynomials. Denoting by ${(B_n)}{n \in \mathbb{N}}$ the sequence of the Bernoulli numbers and by ${(B_n(X))}{n \in \mathbb{N}}$ the sequence of the Bernoulli polynomials, we especially obtain that for any natural number $n$, the reciprocal polynomial of the polynomial $\big(B_n(X) - B_n\big)$ is integer-valued.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube