Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One-dimensional flows of a polytropic gas: Lie group classification, conservation laws, invariant and conservative difference schemes (2011.14397v1)

Published 29 Nov 2020 in math-ph, cs.NA, math.MP, and math.NA

Abstract: The paper considers one-dimensional flows of a polytropic gas in the Lagrangian coordinates in three cases: plain one-dimensional flows, radially symmetric flows and spherically symmetric flows. The one-dimensional flow of a polytropic gas is described by one second-order partial differential equation in the Lagrangian variables. Lie group classification of this PDE is performed. Its variational structure allows to construct conservation laws with the help of Noether's theorem. These conservation laws are also recalculated for the gas dynamics variables in the Lagrangian and Eulerian coordinates. Additionally, invariant and conservative difference schemes are provided.

Citations (1)

Summary

We haven't generated a summary for this paper yet.