Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conservative invariant finite-difference schemes for the modified shallow water equations in Lagrangian coordinates (2111.08604v1)

Published 16 Nov 2021 in math.NA and cs.NA

Abstract: The one-dimensional modified shallow water equations in Lagrangian coordinates are considered. It is shown the relationship between symmetries and conservation laws in Lagrangian coordinates, in mass Lagrangian variables, and Eulerian coordinates. For equations in Lagrangian coordinates an invariant finite-difference scheme is constructed for all cases for which conservation laws exist in the differential model. Such schemes possess the difference analogues of the conservation laws of mass, momentum, energy, the law of center of mass motion for horizontal, inclined and parabolic bottom topographies. Invariant conservative difference scheme is tested numerically in comparison with naive approximation invariant scheme.

Citations (10)

Summary

We haven't generated a summary for this paper yet.