Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data-Driven Study of Commonsense Knowledge using the ConceptNet Knowledge Base (2011.14084v2)

Published 28 Nov 2020 in cs.AI and cs.CL

Abstract: Acquiring commonsense knowledge and reasoning is recognized as an important frontier in achieving general AI. Recent research in the NLP community has demonstrated significant progress in this problem setting. Despite this progress, which is mainly on multiple-choice question answering tasks in limited settings, there is still a lack of understanding (especially at scale) of the nature of commonsense knowledge itself. In this paper, we propose and conduct a systematic study to enable a deeper understanding of commonsense knowledge by doing an empirical and structural analysis of the ConceptNet knowledge base. ConceptNet is a freely available knowledge base containing millions of commonsense assertions presented in natural language. Detailed experimental results on three carefully designed research questions, using state-of-the-art unsupervised graph representation learning ('embedding') and clustering techniques, reveal deep substructures in ConceptNet relations, allowing us to make data-driven and computational claims about the meaning of phenomena such as 'context' that are traditionally discussed only in qualitative terms. Furthermore, our methodology provides a case study in how to use data-science and computational methodologies for understanding the nature of an everyday (yet complex) psychological phenomenon that is an essential feature of human intelligence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ke Shen (20 papers)
  2. Mayank Kejriwal (48 papers)
Citations (3)