Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

High-Throughput Parallel Viterbi Decoder on GPU Tensor Cores (2011.13579v1)

Published 27 Nov 2020 in cs.DC and eess.SP

Abstract: Many research works have been performed on implementation of Vitrerbi decoding algorithm on GPU instead of FPGA because this platform provides considerable flexibility in addition to great performance. Recently, the recently-introduced Tensor cores in modern GPU architectures provide incredible computing capability. This paper proposes a novel parallel implementation of Viterbi decoding algorithm based on Tensor cores in modern GPU architectures. The proposed parallel algorithm is optimized to efficiently utilize the computing power of Tensor cores. Experiments show considerable throughput improvements in comparison with previous works.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.