Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stochastic reaction-diffusion equations on networks (2011.12780v2)

Published 23 Nov 2020 in math.PR and math.AP

Abstract: We consider stochastic reaction-diffusion equations on a finite network represented by a finite graph. On each edge in the graph a multiplicative cylindrical Gaussian noise driven reaction-diffusion equation is given supplemented by a dynamic Kirchhoff-type law perturbed by multiplicative scalar Gaussian noise in the vertices. The reaction term on each edge is assumed to be an odd degree polynomial, not necessarily of the same degree on each edge, with possibly stochastic coefficients and negative leading term. We utilize the semigroup approach for stochastic evolution equations in Banach spaces to obtain existence and uniqueness of solutions with sample paths in the space of continuous functions on the graph. In order to do so we generalize existing results on abstract stochastic reaction-diffusion equations in Banach spaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.