Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Expand: Reinforced Pseudo-relevance Feedback Selection for Information-seeking Conversations (2011.12771v2)

Published 25 Nov 2020 in cs.CL

Abstract: Information-seeking conversation systems are increasingly popular in real-world applications, especially for e-commerce companies. To retrieve appropriate responses for users, it is necessary to compute the matching degrees between candidate responses and users' queries with historical dialogue utterances. As the contexts are usually much longer than responses, it is thus necessary to expand the responses (usually short) with richer information. Recent studies on pseudo-relevance feedback (PRF) have demonstrated its effectiveness in query expansion for search engines, hence we consider expanding response using PRF information. However, existing PRF approaches are either based on heuristic rules or require heavy manual labeling, which are not suitable for solving our task. To alleviate this problem, we treat the PRF selection for response expansion as a learning task and propose a reinforced learning method that can be trained in an end-to-end manner without any human annotations. More specifically, we propose a reinforced selector to extract useful PRF terms to enhance response candidates and a BERT-based response ranker to rank the PRF-enhanced responses. The performance of the ranker serves as a reward to guide the selector to extract useful PRF terms, which boosts the overall task performance. Extensive experiments on both standard benchmarks and commercial datasets prove the superiority of our reinforced PRF term selector compared with other potential soft or hard selection methods. Both case studies and quantitative analysis show that our model is capable of selecting meaningful PRF terms to expand response candidates and also achieving the best results compared with all baselines on a variety of evaluation metrics. We have also deployed our method on online production in an e-commerce company, which shows a significant improvement over the existing online ranking system.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Haojie Pan (14 papers)
  2. Cen Chen (81 papers)
  3. Chengyu Wang (93 papers)
  4. Minghui Qiu (58 papers)
  5. Liu Yang (194 papers)
  6. Feng Ji (74 papers)
  7. Jun Huang (126 papers)
Citations (4)