Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Far Are We from Robust Voice Conversion: A Survey (2011.12063v3)

Published 24 Nov 2020 in eess.AS and cs.SD

Abstract: Voice conversion technologies have been greatly improved in recent years with the help of deep learning, but their capabilities of producing natural sounding utterances in different conditions remain unclear. In this paper, we gave a thorough study of the robustness of known VC models. We also modified these models, such as the replacement of speaker embeddings, to further improve their performances. We found that the sampling rate and audio duration greatly influence voice conversion. All the VC models suffer from unseen data, but AdaIN-VC is relatively more robust. Also, the speaker embedding jointly trained is more suitable for voice conversion than those trained on speaker identification.

Citations (22)

Summary

We haven't generated a summary for this paper yet.