Papers
Topics
Authors
Recent
2000 character limit reached

Reduced Order Modeling for Parameterized Time-Dependent PDEs using Spatially and Memory Aware Deep Learning

Published 23 Nov 2020 in math.NA and cs.NA | (2011.11327v1)

Abstract: We present a novel reduced order model (ROM) approach for parameterized time-dependent PDEs based on modern learning. The ROM is suitable for multi-query problems and is nonintrusive. It is divided into two distinct stages: A nonlinear dimensionality reduction stage that handles the spatially distributed degrees of freedom based on convolutional autoencoders, and a parameterized time-stepping stage based on memory aware neural networks (NNs), specifically causal convolutional and long short-term memory NNs. Strategies to ensure generalization and stability are discussed. The methodology is tested on the heat equation, advection equation, and the incompressible Navier-Stokes equations, to show the variety of problems the ROM can handle.

Citations (43)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.