Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Searching and Sorting with O(n^2) processors in O(1) time (2011.11144v1)

Published 23 Nov 2020 in cs.DS and cs.DM

Abstract: The proliferation of number of processing elements (PEs) in parallel computer systems, along with the use of more extensive parallelization of algorithms causes the interprocessor communications dominate VLSI chip space. This paper proposes a new architecture to overcome this issue by using simple crosspoint switches to pair PEs instead of a complex interconnection network. Based on the cyclic permutation wiring idea described in \cite{oruc2016self}, this pairing leads to a linear crosspoint array of $n(n-1)/2$ processing elements and as many crosspoints. We demonstrate the versatility of this new parallel architecture by designing fast searching and sorting algorithms for it. In particular, we show that finding a minimum, maximum, and searching a list of $n$ elements can all be performed in $O(1)$ time with elementary logic gates with $O(n)$ fan-in, and in $O(\lg n)$ time with $O(1)$ fan-in. We further show that sorting a list of $n$ elements can also be carried out in $O(1)$ time using elementary logic gates with $O(n)$ fan-in and threshold logic gates. The sorting time increases to $O(\lg n\lg\lg n)$ if only elementary logic gates with $O(1)$ fan-in are used. The algorithm can find the maximum among $n$ elements in $O(1)$ time, and sort $n$ elements in $O(\lg n (\lg\lg n))$ time. In addition, we show how other fundamental queries can be handled within the same order of time complexities.

Summary

We haven't generated a summary for this paper yet.