Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Recovery-to-Efficiency: A New Robustness Concept for Multi-objective Optimization under Uncertainty (2011.10341v1)

Published 20 Nov 2020 in math.OC and cs.AI

Abstract: This paper presents a new robustness concept for uncertain multi-objective optimization problems. More precisely, in the paper the so-called recovery-to-efficiency robustness concept is proposed and investigated. Several approaches for generating recovery-to-efficiency robust sets in the context of multi-objective optimization are proposed as well. An extensive experimental analysis is performed to disclose differences among robust sets obtained using different concepts as well as to deduce some interesting observations. For testing purposes, instances from the bi-objective knapsack problem are considered.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.