Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Hölder regularity of a linear stochastic partial-integro-differential equation with memory (2011.10092v2)

Published 19 Nov 2020 in math.PR

Abstract: In light of recent work on particles fluctuating in linear viscoelastic fluids, we study a linear stochastic partial-integro-differential equation with memory that is driven by a stationary noise on a bounded, smooth domain. Using the framework of generalized stationary solutions introduced in~\cite{mckinley2018anomalous}, we provide sufficient conditions on the differential operator and the noise to obtain the existence as well as H\"older regularity of the stationary solutions for the concerned equation. As an application of the regularity results, we compare to analogous classical results for the stochastic heat equation. When the 1d stochastic heat equation is driven by white noise, solutions are continuous with space and time regularity that is H\"older $(1/2-\ep)$ and $(1/4-\ep)$ respectively. When driven by colored-in-space noise, solutions can have a range of regularity properties depending on the structure of the noise. Here, we show that the particular form of colored-in-time memory that arises in viscoelastic diffusion applications, satisfying what is called the Fluctuation--Dissipation relationship, yields sample paths that are H\"older $(1/2-\ep)$ and $(1/2-\ep)$ in space and time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.