Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GL-Coarsener: A Graph representation learning framework to construct coarse grid hierarchy for AMG solvers (2011.09994v1)

Published 19 Nov 2020 in math.NA, cs.AI, cs.LG, and cs.NA

Abstract: In many numerical schemes, the computational complexity scales non-linearly with the problem size. Solving a linear system of equations using direct methods or most iterative methods is a typical example. Algebraic multi-grid (AMG) methods are numerical methods used to solve large linear systems of equations efficiently. One of the main differences between AMG methods is how the coarser grid is constructed from a given fine grid. There are two main classes of AMG methods; graph and aggregation based coarsening methods. Here we propose an aggregation-based coarsening framework leveraging graph representation learning and clustering algorithms. Our method introduces the power of machine learning into the AMG research field and opens a new perspective for future researches. The proposed method uses graph representation learning techniques to learn latent features of the graph obtained from the underlying matrix of coefficients. Using these extracted features, we generated a coarser grid from the fine grid. The proposed method is highly capable of parallel computations. Our experiments show that the proposed method's efficiency in solving large systems is closely comparable with other aggregation-based methods, demonstrating the high capability of graph representation learning in designing multi-grid solvers.

Summary

We haven't generated a summary for this paper yet.