Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Subgeometric hypocoercivity for piecewise-deterministic Markov process Monte Carlo methods (2011.09341v2)

Published 18 Nov 2020 in math.PR and stat.CO

Abstract: We extend the hypocoercivity framework for piecewise-deterministic Markov process (PDMP) Monte Carlo established in [Andrieu et. al. (2018)] to heavy-tailed target distributions, which exhibit subgeometric rates of convergence to equilibrium. We make use of weak Poincar\'e inequalities, as developed in the work of [Grothaus and Wang (2019)], the ideas of which we adapt to the PDMPs of interest. On the way we report largely potential-independent approaches to bounding explicitly solutions of the Poisson equation of the Langevin diffusion and its first and second derivatives, required here to control various terms arising in the application of the hypocoercivity result.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com