Papers
Topics
Authors
Recent
Search
2000 character limit reached

Self-supervised Document Clustering Based on BERT with Data Augment

Published 17 Nov 2020 in cs.CL and cs.AI | (2011.08523v3)

Abstract: Contrastive learning is a promising approach to unsupervised learning, as it inherits the advantages of well-studied deep models without a dedicated and complex model design. In this paper, based on bidirectional encoder representations from transformers, we propose self-supervised contrastive learning (SCL) as well as few-shot contrastive learning (FCL) with unsupervised data augmentation (UDA) for text clustering. SCL outperforms state-of-the-art unsupervised clustering approaches for short texts and those for long texts in terms of several clustering evaluation measures. FCL achieves performance close to supervised learning, and FCL with UDA further improves the performance for short texts.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.