Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Self-supervised Document Clustering Based on BERT with Data Augment (2011.08523v3)

Published 17 Nov 2020 in cs.CL and cs.AI

Abstract: Contrastive learning is a promising approach to unsupervised learning, as it inherits the advantages of well-studied deep models without a dedicated and complex model design. In this paper, based on bidirectional encoder representations from transformers, we propose self-supervised contrastive learning (SCL) as well as few-shot contrastive learning (FCL) with unsupervised data augmentation (UDA) for text clustering. SCL outperforms state-of-the-art unsupervised clustering approaches for short texts and those for long texts in terms of several clustering evaluation measures. FCL achieves performance close to supervised learning, and FCL with UDA further improves the performance for short texts.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.