Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Value Function Approximations via Kernel Embeddings for No-Regret Reinforcement Learning (2011.07881v3)

Published 16 Nov 2020 in cs.LG

Abstract: We consider the regret minimization problem in reinforcement learning (RL) in the episodic setting. In many real-world RL environments, the state and action spaces are continuous or very large. Existing approaches establish regret guarantees by either a low-dimensional representation of the stochastic transition model or an approximation of the $Q$-functions. However, the understanding of function approximation schemes for state-value functions largely remains missing. In this paper, we propose an online model-based RL algorithm, namely the CME-RL, that learns representations of transition distributions as embeddings in a reproducing kernel Hilbert space while carefully balancing the exploitation-exploration tradeoff. We demonstrate the efficiency of our algorithm by proving a frequentist (worst-case) regret bound that is of order $\tilde{O}\big(H\gamma_N\sqrt{N}\big)$\footnote{ $\tilde{O}(\cdot)$ hides only absolute constant and poly-logarithmic factors.}, where $H$ is the episode length, $N$ is the total number of time steps and $\gamma_N$ is an information theoretic quantity relating the effective dimension of the state-action feature space. Our method bypasses the need for estimating transition probabilities and applies to any domain on which kernels can be defined. It also brings new insights into the general theory of kernel methods for approximate inference and RL regret minimization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sayak Ray Chowdhury (23 papers)
  2. Rafael Oliveira (37 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.